Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746103

ABSTRACT

Connections in the cortex of diverse mammalian species are predicted reliably by the Structural Model for direction of pathways and signal processing (reviewed in 1,2 ). The model is rooted in the universal principle of cortical systematic variation in laminar structure and has been supported widely for connection patterns in animals but has not yet been tested for humans. Here, in postmortem brains of individuals neuropathologically diagnosed with chronic traumatic encephalopathy (CTE) we studied whether the hyperphosphorylated tau (p-tau) pathology parallels connection sequence in time by circuit mechanisms. CTE is a progressive p-tau pathology that begins focally in perivascular sites in sulcal depths of the neocortex (stages I-II) and later involves the medial temporal lobe (MTL) in stages III-IV. We provide novel quantitative evidence that the p-tau pathology in MTL A28 and nearby sites in CTE stage III closely follows the graded laminar patterns seen in homologous cortico-cortical connections in non-human primates. The Structural Model successfully predicted the laminar distribution of the p-tau neurofibrillary tangles and neurites and their density, based on the relative laminar (dis)similarity between the cortical origin (seed) and each connection site. The findings were validated for generalizability by a computational progression model. By contrast, the early focal perivascular pathology in the sulcal depths followed local columnar connectivity rules. These findings support the general applicability of a theoretical model to unravel the direction and progression of p-tau pathology in human neurodegeneration via a cortico-cortical mechanism. Cortical pathways converging on medial MTL help explain the progressive spread of p-tau pathology from focal cortical sites in early CTE to widespread lateral MTL areas and beyond in later disease stages.

2.
J Comp Neurol ; 531(18): 1963-1986, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37919833

ABSTRACT

The entorhinal cortex (EC, A28) is linked through reciprocal pathways with nearby perirhinal and visual, auditory, and multimodal association cortices in the temporal lobe, in pathways associated with the flow of information for memory processing. The density and laminar organization of these pathways is not well understood in primates. We studied interconnections within the ventral temporal lobe in young adult rhesus monkeys of both sexes with the aid of neural tracers injected in temporal areas (Ts1, Ts2, TE1, area 36, temporal polar area TPro, and area 28) to determine the density and laminar distribution of projection neurons within the temporal lobe. These temporal areas can be categorized into three different cortical types based on their laminar architecture: the sensory association areas Ts1, Ts2, and TE1 have six layers (eulaminate); the perirhinal limbic areas TPro and area 36 have an incipient layer IV (dysgranular); and area 28 lacks layer IV (agranular). We found that (1) temporal areas that are similar in laminar architecture by cortical type are strongly interconnected, and (2) the laminar pattern of connections is dependent on the difference in cortical laminar structure between linked areas. Thus, agranular A28 is more strongly connected with other agranular/dysgranular areas than with eulaminate cortices. Further, A28 predominantly projected via feedback-like pathways that originated in the deep layers, and received feedforward-like projections from areas of greater laminar differentiation, which emanated from the upper layers. Our results are consistent with the Structural Model, which relates the density and laminar distribution of connections to the relationship of the laminar structure between the linked areas. These connections were viewed in the context of the inhibitory microenvironment of A28, which is the key recipient of pathways from the cortex and of the output of hippocampus. Our findings revealed a higher population of calretinin (CR)-expressing neurons in EC, with a significantly higher density in its lateral division. Medial EC had a higher density of CR neurons in the deep layers, particularly in layer Va. In contrast, parvalbumin (PV) neurons were more densely distributed in the deep layers of the lateral subdivisions of rostral EC, especially in layer Va, whereas the densities of calbindin (CB) neurons in the medial and lateral EC were comparable in all layers, except for layer IIIa, in which medial EC had a higher CB population than the lateral. The pattern of connections in the inhibitory microenvironment of EC, which sends and receives input from the hippocampus, may shed light on signal propagation in this network associated with diverse aspects of memory, and disruptions in neurologic and psychiatric diseases that affect this region.


Subject(s)
Cerebral Cortex , Temporal Lobe , Female , Animals , Male , Macaca mulatta , Neural Pathways/physiology , Hippocampus/physiology , Entorhinal Cortex , Calbindins
3.
Front Psychiatry ; 14: 1199690, 2023.
Article in English | MEDLINE | ID: mdl-37900297

ABSTRACT

Introduction: The strength of certain visual illusions, including contrast-contrast and apparent motion, is weakened in individuals with schizophrenia. Such phenomena have been interpreted as the impaired integration of inhibitory and excitatory neural responses, and impaired top-down feedback mechanisms. Methods: To investigate whether and how these factors influence the perceived contrast-contrast and apparent motion illusions in individuals with schizophrenia, we propose a two-layer network, with top-down feedback from layer 2 to layer 1 that can model visual receptive fields (RFs) and their inhibitory and excitatory subfields. Results: Our neural model suggests that illusion perception changes in individuals with schizophrenia can be influenced by altered top-down mechanisms and the organization of the on-center off-surround receptive fields. Alteration of the RF inhibitory surround and/or the excitatory center can replicate the difference of illusion precepts between individuals with schizophrenia within certain clinical states and normal controls. The results show that the simulated top-down feedback modulation enlarges the difference of the model illusion representations, replicating the difference between the two groups. Discussion: We propose that the heterogeneity of visual and in general sensory processing in certain clinical states of schizophrenia can be largely explained by the degree of top-down feedback reduction, emphasizing the critical role of top-down feedback in illusion perception, and to a lesser extent on the imbalance of excitation/inhibition. Our neural model provides a mechanistic explanation for the modulated visual percepts of contrast-contrast and apparent motion in schizophrenia with findings that can explain a broad range of visual perceptual observations in previous studies. The two-layer motif of the current model provides a general framework that can be tailored to investigate subcortico-cortical (such as thalamocortical) and cortico-cortical networks, bridging neurobiological changes in schizophrenia and perceptual processing.

4.
bioRxiv ; 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37904992

ABSTRACT

Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.

6.
Netw Neurosci ; 7(2): 743-768, 2023.
Article in English | MEDLINE | ID: mdl-37397882

ABSTRACT

Sleep spindles are associated with the beginning of deep sleep and memory consolidation and are disrupted in schizophrenia and autism. In primates, distinct core and matrix thalamocortical (TC) circuits regulate sleep spindle activity through communications that are filtered by the inhibitory thalamic reticular nucleus (TRN); however, little is known about typical TC network interactions and the mechanisms that are disrupted in brain disorders. We developed a primate-specific, circuit-based TC computational model with distinct core and matrix loops that can simulate sleep spindles. We implemented novel multilevel cortical and thalamic mixing, and included local thalamic inhibitory interneurons, and direct layer 5 projections of variable density to TRN and thalamus to investigate the functional consequences of different ratios of core and matrix node connectivity contribution to spindle dynamics. Our simulations showed that spindle power in primates can be modulated based on the level of cortical feedback, thalamic inhibition, and engagement of model core versus matrix, with the latter having a greater role in spindle dynamics. The study of the distinct spatial and temporal dynamics of core-, matrix-, and mix-generated sleep spindles establishes a framework to study disruption of TC circuit balance underlying deficits in sleep and attentional gating seen in autism and schizophrenia.

8.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162902

ABSTRACT

The strength of certain visual illusions is weakened in individuals with schizophrenia. Such phenomena have been interpreted as the impaired integration of inhibitory and excitatory neural responses, and impaired top-down feedback mechanisms. To investigate whether and how these factors influence the perceived illusions in individuals with schizophrenia, we propose a two-layer network that can model visual receptive fields (RFs), their inhibitory and excitatory subfields, and the top-down feedback. Our neural model suggests that illusion perception changes in individuals with schizophrenia can be influenced by altered top-down mechanisms and the organization of the on-center off-surround receptive fields. Alteration of the RF inhibitory surround and/or the excitatory center can replicate the difference of illusion precepts between individuals with schizophrenia and normal controls. The results show that the simulated top-down feedback modulation enlarges the difference of the model illusion representations, replicating the difference between the two groups. We propose that the heterogeneity of visual and in general sensory processing in schizophrenia can be largely explained by the degree of top-down feedback reduction, emphasizing the critical role of top-down feedback in illusion perception, and to a lesser extent on the imbalance of excitation/inhibition. Our neural model provides a mechanistic explanation for the modulated visual percepts in schizophrenia with findings that can explain a broad range of visual perceptual observations in previous studies. The two-layer motif of the current model provides a general framework that can be tailored to investigate subcortico-cortical (such as thalamocortical) and cortico-cortical networks, bridging neurobiological changes in schizophrenia and perceptual processing.

9.
Brain Struct Funct ; 228(5): 1069-1093, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35962240

ABSTRACT

Sixty years ago, Friedrich Sanides traced the origin of the tangential expansion of the primate neocortex to two ancestral anlagen in the allocortex of reptiles and mammals, and proposed the Hypothesis on the Dual Origin of the Neocortex. According to Sanides, paraolfactory and parahippocampal gradients of laminar elaboration expanded in evolution by addition of successive concentric rings of gradually different cortical types inside the allocortical ring. Rodents had fewer rings and primates had more rings in the inner part of the cortex. In the present article, we perform cortical type analysis of the neocortex of adult rats, Rhesus macaques, and humans to propose hypotheses on homology of cortical areas applying the principles of the Hypothesis on the Dual Origin of the Neocortex. We show that areas in the outer rings of the neocortex have comparable laminar elaboration in rats and primates, while most 6-layer eulaminate areas in the innermost rings of primate neocortex lack homologous counterparts in rats. We also represent the topological distribution of cortical types in simplified flat maps of the cerebral cortex of monotremes, rats, and primates. Finally, we propose an elaboration of the Hypothesis on the Dual Origin of the Neocortex in the context of modern studies of pallial patterning that integrates the specification of pallial sectors in development of vertebrate embryos. The updated version of the hypothesis of Sanides provides explanation for the emergence of cortical hierarchies in mammals and will guide future research in the phylogenetic origin of neocortical areas.


Subject(s)
Neocortex , Humans , Rats , Animals , Phylogeny , Macaca mulatta , Biological Evolution , Primates , Mammals
10.
Front Syst Neurosci ; 16: 921468, 2022.
Article in English | MEDLINE | ID: mdl-36203745

ABSTRACT

The idea of columns as an organizing cortical unit emerged from physiologic studies in the sensory systems. Connectional studies and molecular markers pointed to widespread presence of modular label that necessitated revision of the classical concept of columns. The general principle of cortical systematic variation in laminar structure is at the core of cortical organization. Systematic variation can be traced to the phylogenetically ancient limbic cortices, which have the simplest laminar structure, and continues through eulaminate cortices that show sequential elaboration of their six layers. Connections are governed by relational rules, whereby columns or modules with a vertical organization represent the feedforward mode of communication from earlier- to later processing cortices. Conversely, feedback connections are laminar-based and connect later- with earlier processing areas; both patterns are established in development. Based on studies in primates, the columnar/modular pattern of communication appears to be newer in evolution, while the broadly based laminar pattern represents an older system. The graded variation of cortices entails a rich variety of patterns of connections into modules, layers, and mixed arrangements as the laminar and modular patterns of communication intersect in the cortex. This framework suggests an ordered architecture poised to facilitate seamless recruitment of areas in behavior, in patterns that are affected in diseases of developmental origin.

11.
Front Neuroanat ; 16: 897237, 2022.
Article in English | MEDLINE | ID: mdl-36157324

ABSTRACT

High-level characterizations of the primate cerebral cortex sit between two extremes: on one end the cortical mantle is seen as a mosaic of structurally and functionally unique areas, and on the other it is seen as a uniform six-layered structure in which functional differences are defined solely by extrinsic connections. Neither of these extremes captures the crucial neuroanatomical finding: that the cortex exhibits systematic gradations in architectonic structure. These gradations have been shown to predict cortico-cortical connectivity, which in turn suggests powerful ways to ground connectomics in anatomical structure, and by extension cortical function. A challenge to widespread use of this concept is the labor-intensive and invasive nature of histological staining, which is the primary means of recognizing anatomical gradations. Here we show that a novel computational analysis technique can provide a coarse-grained picture of cortical variation. For each of 78 cortical areas spanning the entire cortical mantle of the rhesus macaque, we created a high dimensional set of anatomical features derived from captured images of cortical tissue stained for myelin and SMI-32. The method involved semi-automated de-noising of images, and enabled comparison of brain areas without hand-labeling of features such as layer boundaries. We applied multidimensional scaling (MDS) to the dataset to visualize similarity among cortical areas. This analysis shows a systematic variation between weakly laminated (limbic) cortices and sharply laminated (eulaminate) cortices. We call this smooth continuum the "cortical spectrum". We also show that this spectrum is visible within subsystems of the cortex: the occipital, parietal, temporal, motor, prefrontal, and insular cortices. We compared the MDS-derived spectrum with a spectrum produced using T1- and T2-weighted magnetic resonance imaging (MRI) data derived from macaque, and found close agreement of the two coarse-graining methods. This suggests that T1w/T2w data, routinely obtained in human MRI studies, can serve as an effective proxy for data derived from high-resolution histological methods. More generally, this approach shows that the cortical spectrum is robust to the specific method used to compare cortical areas, and is therefore a powerful tool to understand the principles of organization of the primate cortex.

12.
Front Integr Neurosci ; 16: 934764, 2022.
Article in English | MEDLINE | ID: mdl-35875507

ABSTRACT

Mounting evidence supports a key involvement of the chondroitin sulfate proteoglycans (CSPGs) NG2 and brevican (BCAN) in the regulation of axonal functions, including axon guidance, fasciculation, conductance, and myelination. Prior work suggested the possibility that these functions may, at least in part, be carried out by specialized CSPG structures surrounding axons, termed axonal coats. However, their existence remains controversial. We tested the hypothesis that NG2 and BCAN, known to be associated with oligodendrocyte precursor cells, form axonal coats enveloping myelinated axons in the human brain. In tissue blocks containing the mediodorsal thalamic nucleus (MD) from healthy donors (n = 5), we used dual immunofluorescence, confocal microscopy, and unbiased stereology to characterize BCAN and NG2 immunoreactive (IR) axonal coats and measure the percentage of myelinated axons associated with them. In a subset of donors (n = 3), we used electron microscopy to analyze the spatial relationship between axons and NG2- and BCAN-IR axonal coats within the human MD. Our results show that a substantial percentage (∼64%) of large and medium myelinated axons in the human MD are surrounded by NG2- and BCAN-IR axonal coats. Electron microscopy studies show NG2- and BCAN-IR axonal coats are interleaved with myelin sheets, with larger axons displaying greater association with axonal coats. These findings represent the first characterization of NG2 and BCAN axonal coats in the human brain. The large percentage of axons surrounded by CSPG coats, and the role of CSPGs in axonal guidance, fasciculation, conductance, and myelination suggest that these structures may contribute to several key axonal properties.

13.
Eur J Neurosci ; 56(3): 4246-4265, 2022 08.
Article in English | MEDLINE | ID: mdl-35701859

ABSTRACT

While atypical sensory perception is reported among individuals with autism spectrum disorder (ASD), the underlying neural mechanisms of autism that give rise to disruptions in sensory perception remain unclear. We developed a neural model with key physiological, functional and neuroanatomical parameters to investigate mechanisms underlying the range of representations of visual illusions related to orientation perception in typically developed subjects compared to individuals with ASD. Our results showed that two theorized autistic traits, excitation/inhibition imbalance and weakening of top-down modulation, could be potential candidates for reduced susceptibility to some visual illusions. Parametric correlation between cortical suppression, balance of excitation/inhibition, feedback from higher visual areas on one hand and susceptibility to a class of visual illusions related to orientation perception on the other hand provide the opportunity to investigate the contribution and complex interactions of distinct sensory processing mechanisms in ASD. The novel approach used in this study can be used to link behavioural, functional and neuropathological studies; estimate and predict perceptual and cognitive heterogeneity in ASD; and form a basis for the development of novel diagnostics and therapeutics.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Illusions , Humans , Illusions/physiology , Visual Perception/physiology
14.
PLoS Biol ; 20(3): e3001612, 2022 03.
Article in English | MEDLINE | ID: mdl-35358176

ABSTRACT

Brain functions rely on the communication network formed by axonal fibers. However, the number of axons connecting different brain regions is unknown. A study in PLoS Biology addresses this question and finds that most areas of the human cerebral cortex are linked by an astoundingly small number of fibers.


Subject(s)
Axons , Brain , Cerebral Cortex , Humans
15.
Neurobiol Aging ; 100: 39-47, 2021 04.
Article in English | MEDLINE | ID: mdl-33477010

ABSTRACT

The aim of this study is to investigate the relationship between aging and brain vasculature health. Three groups of mice, 3, 17-18, and 24 months, comparable to young adult, middle age, and old human were studied. Prussian blue histology and fast imaging with steady precession T2∗-weighted magnetic resonance imaging were used to quantify structural changes in the brain across age groups. The novel object recognition test was used to assess behavioral changes associated with anatomical changes. This study is the first to show that the thalamus is the most vulnerable brain region in the mouse model for aging-induced vascular damage. Magnetic resonance imaging data document the timeline of accumulation of thalamic damage. Histological data reveal that the majority of vascular damage accumulates in the ventroposterior nucleus and mediodorsal thalamic nucleus. Functional studies indicate that aging-induced vascular damage in the thalamus is associated with memory and sensorimotor deficits. This study points to the possibility that aging-associated vascular disease is a factor in irreversible brain damage as early as middle age.


Subject(s)
Aging/pathology , Aging/psychology , Cerebral Hemorrhage/pathology , Memory Disorders/pathology , Somatosensory Disorders/pathology , Stroke/pathology , Thalamus/pathology , Animals , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Humans , Male , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Mice, Inbred C57BL , Somatosensory Disorders/diagnostic imaging , Somatosensory Disorders/etiology , Stroke/complications , Thalamus/diagnostic imaging
16.
Front Neuroanat ; 14: 576015, 2020.
Article in English | MEDLINE | ID: mdl-33364924

ABSTRACT

The human cerebral cortex is parcellated in hundreds of areas using neuroanatomy and imaging methods. Alternatively, cortical areas can be classified into few cortical types according to their degree of laminar differentiation. Cortical type analysis is based on the gradual and systematic variation of laminar features observed across the entire cerebral cortex in Nissl stained sections and has profound implications for understanding fundamental aspects of evolution, development, connections, function, and pathology of the cerebral cortex. In this protocol paper, we explain the general principles of cortical type analysis and provide tables with the fundamental features of laminar structure that are studied for this analysis. We apply cortical type analysis to the micrographs of the Atlas of the human cerebral cortex of von Economo and Koskinas and provide tables and maps with the areas of this Atlas and their corresponding cortical type. Finally, we correlate the cortical type maps with the T1w/T2w ratio from widely used reference magnetic resonance imaging scans. The analysis, tables and maps of the human cerebral cortex shown in this protocol paper can be used to predict patterns of connections between areas according to the principles of the Structural Model and determine their level in cortical hierarchies. Cortical types can also predict the spreading of abnormal proteins in neurodegenerative diseases to the level of cortical layers. In summary, cortical type analysis provides a theoretical and practical framework for directed studies of connectivity, synaptic plasticity, and selective vulnerability to neurologic and psychiatric diseases in the human neocortex.

17.
Mol Autism ; 11(1): 83, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33081829

ABSTRACT

BACKGROUND: The human orbitofrontal cortex (OFC) is involved in assessing the emotional significance of events and stimuli, emotion-based learning, allocation of attentional resources, and social cognition. Little is known about the structure, connectivity and excitatory/inhibitory circuit interactions underlying these diverse functions in human OFC, as well as how the circuit is disrupted in individuals with autism spectrum disorder (ASD). METHODS: We used post-mortem brain tissue from neurotypical adults and individuals with ASD. We examined the morphology and distribution of myelinated axons across cortical layers in OFC, at the single axon level, as a proxy of excitatory pathways. In the same regions, we also examined the laminar distribution of all neurons and neurochemically- and functionally-distinct inhibitory neurons that express the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR). RESULTS: We found that the density of myelinated axons increased consistently towards layer 6, while the average axon diameter did not change significantly across layers in both groups. However, both the density and diameter of myelinated axons were significantly lower in the ASD group compared with the Control group. The distribution pattern and density of the three major types of inhibitory neurons was comparable between groups, but there was a significant reduction in the density of excitatory neurons across OFC layers in ASD. LIMITATIONS: This study is limited by the availability of human post-mortem tissue optimally processed for high-resolution microscopy and immunolabeling, especially from individuals with ASD. CONCLUSIONS: The balance between excitation and inhibition in OFC is at the core of its function, assessing and integrating emotional and social cues with internal states and external inputs. Our preliminary results provide evidence for laminar-specific changes in the ratio of excitation/inhibition in OFC of adults with ASD, with an overall weakening and likely disorganization of excitatory signals and a relative strengthening of local inhibition. These changes likely underlie pathology of major OFC communications with limbic or other cortices and the amygdala in individuals with ASD, and may provide the anatomic basis for disrupted transmission of signals for social interactions and emotions in autism.


Subject(s)
Autistic Disorder/physiopathology , Neural Inhibition/physiology , Prefrontal Cortex/physiopathology , Adult , Aged , Autistic Disorder/diagnosis , Axons/metabolism , Axons/ultrastructure , Female , Humans , Male , Middle Aged , Models, Neurological , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure
18.
PLoS Biol ; 18(2): e3000639, 2020 02.
Article in English | MEDLINE | ID: mdl-32106269

ABSTRACT

Studies on the thalamus have mostly focused on sensory relay nuclei, but the organization of pathways associated with emotions is not well understood. We addressed this issue by testing the hypothesis that the primate amygdala acts, in part, like a sensory structure for the affective import of stimuli and conveys this information to the mediodorsal thalamic nucleus, magnocellular part (MDmc). We found that primate sensory cortices innervate amygdalar sites that project to the MDmc, which projects to the orbitofrontal cortex. As in sensory thalamic systems, large amygdalar terminals innervated excitatory relay and inhibitory neurons in the MDmc that facilitate faithful transmission to the cortex. The amygdala, however, uniquely innervated a few MDmc neurons by surrounding and isolating large segments of their proximal dendrites, as revealed by three-dimensional high-resolution reconstruction. Physiologic studies have shown that large axon terminals are found in pathways issued from motor systems that innervate other brain centers to help distinguish self-initiated from other movements. By analogy, the amygdalar pathway to the MDmc may convey signals forwarded to the orbitofrontal cortex to monitor and update the status of the environment in processes deranged in schizophrenia, resulting in attribution of thoughts and actions to external sources.


Subject(s)
Amygdala/physiology , Emotions/physiology , Mediodorsal Thalamic Nucleus/physiology , Amygdala/cytology , Animals , Dendrites , Female , Macaca mulatta , Male , Mediodorsal Thalamic Nucleus/cytology , Neural Pathways , Neurons , Prefrontal Cortex/physiology , Presynaptic Terminals , Thalamus/cytology , Thalamus/physiology
19.
PLoS Biol ; 17(5): e3000259, 2019 05.
Article in English | MEDLINE | ID: mdl-31075099

ABSTRACT

Hypotheses and theoretical frameworks are needed to organize and interpret the wealth of data on the organization of cortical networks in humans and animals in the light of development, evolution, and selective vulnerability to pathology. Goulas and colleagues compared several hypotheses of cortical network organization in 4 mammalian species and conclude that (1) the laminar pattern of cortico-cortical connections is better predicted by the Structural Model, which relates cytoarchitectonic differences of cortical areas to their interconnectedness, and (2) the existence of cortico-cortical connections is related to cytoarchitectonic differences and the physical distance between cortical areas. The predictions of the Structural Model can be applied to the human cortex, in which invasive studies are precluded. Goulas and colleagues advance interesting questions regarding the emergence of cortical structure and networks in development and evolution. Validated theories of cortical structure, development, and function can guide studies of cortical networks likely affected in neurodevelopmental disorders.


Subject(s)
Connectome , Animals , Cerebral Cortex , Humans , Mammals , Organizations
20.
Acta Neuropathol Commun ; 7(1): 40, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867066

ABSTRACT

Autism is a neurodevelopmental connectivity disorder characterized by cortical network disorganization and imbalance in excitation/inhibition. However, little is known about the development of autism pathology and the disruption of laminar-specific excitatory and inhibitory cortical circuits. To begin to address these issues, we examined layer 1 of the lateral prefrontal cortex (LPFC), an area with prolonged development and maturation that is affected in autism. We focused on layer 1 because it contains a distinctive, diverse population of interneurons and glia, receives input from feedback and neuromodulatory pathways, and plays a critical role in the development, maturation, and function of the cortex. We used unbiased quantitative methods at high resolution to study the morphology, neurochemistry, distribution, and density of neurons and myelinated axons in post-mortem brain tissue from children and adults with and without autism. We cross-validated our findings through comparisons with neighboring anterior cingulate cortices and optimally-fixed non-human primate tissue. In neurotypical controls we found an increase in the density of myelinated axons from childhood to adulthood. Neuron density overall declined with age, paralleled by decreased density of inhibitory interneurons labeled by calretinin (CR), calbindin (CB), and parvalbumin (PV). Importantly, we found PV neurons in layer 1 of typically developing children, previously detected only perinatally. In autism there was disorganization of cortical networks within layer 1: children with autism had increased variability in the trajectories and thickness of myelinated axons in layer 1, while adults with autism had a reduction in the relative proportion of thin axons. Neurotypical postnatal changes in layer 1 of LPFC likely underlie refinement of cortical activity during maturation of cortical networks involved in cognition. Our findings suggest that disruption of the maturation of feedback pathways, rather than interneurons in layer 1, has a key role in the development of imbalance between excitation and inhibition in autism.


Subject(s)
Autistic Disorder/pathology , Prefrontal Cortex/growth & development , Prefrontal Cortex/physiology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Prefrontal Cortex/ultrastructure , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...